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Abstract

The metric distortion framework posits that n voters and m candidates are jointly embedded in

a metric space such that voters rank candidates that are closer to them higher. A voting rule’s purpose is

to pick a candidate with minimum total distance to the voters, given only the rankings, but not the actual

distances. As a result, in the worst case, each deterministic rule picks a candidate whose total distance is

at least three times larger than that of an optimal one, i.e., has distortion at least 3. A recent breakthrough

result showed that achieving this bound of 3 is possible; however, the proof is non-constructive, and

the voting rule itself is a complicated exhaustive search.

Our main result is an extremely simple voting rule, called PLURALITYVETO, which achieves the

same optimal distortion of 3. Each candidate starts with a score equal to his number of first-place votes.

These scores are then gradually decreased via an n-round veto process in which a candidate drops out

when his score reaches zero. One after the other, voters decrement the score of their bottom choice

among the standing candidates, and the last standing candidate wins. We give a one-paragraph proof that

this voting rule achieves distortion 3. This rule is also immensely practical, and it only makes two queries

to each voter, so it has low communication overhead. We also show that a straightforward extension can

be used to give a constructive proof of the more general Ranking-Matching Lemma of Gkatzelis et al.

We also generalize PLURALITYVETO into a class of randomized voting rules in the following way:

PLURALITYVETO is run only for k < n rounds; then, a candidate is chosen with probability proportional

to his residual score. This general rule interpolates between RANDOMDICTATORSHIP (for k = 0) and

PLURALITYVETO (for k = n − 1), and k controls the variance of the output. We show that for all k,

this rule has expected distortion at most 3.

1 Introduction

Voting is a fundamental process for reaching consensus and plays a vital role in democracies, organizations

and businesses. Even honeybees use a type of voting to decide among potential nest sites; each bee casts

a numerical vote indicating the intensity of its preferences, and the site with the highest score wins [29].

Quantifying preference intensity is not so easy for complicated problems that humans face; thus, the pre-

dominant approach is to elicit, from each voter, a preference ranking over candidates. This creates a need

for a voting rule that determines the winner from these preferences. Numerous rules have been proposed

over the years, with no consensus on a “best” rule.

*Contact Author
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A key contribution of computer science in this regard has been viewing the ranking of a voter as a proxy

for the latent cost she1 incurs if some candidate wins. Then, an optimal candidate can be defined as one

minimizing the total cost, and vote aggregation can be interpreted as an optimization problem with missing

information. Due to the missing information, a voting rule can be thought of as an approximation algorithm,

whose worst-case performance is referred to as its distortion in this setting.

Without any structures on the costs, not much can be achieved in terms of distortion [11]. An important

contribution due to Anshelevich et al. [2] (see also the journal version [3] and recent surveys [5, 4]) was

to assume that the n voters and m candidates are jointly embedded in a metric space, and voters rank

candidates by increasing distance.2 This viewpoint is motivated by observing that each candidate exhibits

a standpoint on various issues that voters care about, and each voter also has a standpoint on these issues that

is presumably reflected on her ballot. One would then expect that voters rank candidates whose standpoints

are “closer” to theirs higher. Note that voting rules do not have access to this space; the only available

information is the rankings, which serve as an ordinal proxy for the (cardinal) distances. The worst-case

approximation specifically for metric costs is called metric distortion. (Formal definitions of all concepts

are given in Section 2.)

The metric distortion framework has proved to be a fruitful analysis tool. In their initial work, An-

shelevich et al. [2] established a lower bound of 3 on the distortion of any deterministic voting rule, and

showed that the Copeland rule nearly matches the lower bound by achieving distortion 5. Several subse-

quent papers worked towards closing this gap. Initially, the Ranked Pairs rule was conjectured to achieve

distortion 3. This was disproved by Goel et al. [18] who gave a lower bound of 5; Kempe [21] strengthened

the lower bound to Ω(
√
m). The first improvement over the upper bound of 5 was due to Munagala and

Wang [24], who achieved distortion 2 +
√
5 ≈ 4.23 using a novel asymmetric variant of the Copeland rule.

The distortion-3 conjecture was recently resolved in a breakthrough result by Gkatzelis et al. [17], using

a novel voting rule called PLURALITYMATCHING.

One of the main drawbacks of PLURALITYMATCHING is that it is unusually complex for a voting rule

in the conventional sense. The winner is selected based on perfect matchings in certain bipartite graphs,

which we will discuss shortly. Due to the complex nature of the voting rule, it is not even obvious that there

always exists a winner in PLURALITYMATCHING; indeed, this existence proof was the main contribution

of Gkatzelis et al. [17] over the prior work of Munagala and Wang [24] and Kempe [21]. The rule is also

almost certainly too technical to be understood by the general public.

Our main contribution is an extremely simple voting rule, called PLURALITYVETO, which achieves

the same optimal metric distortion of 3.

Under PLURALITYVETO, each candidate starts with a score equal to his plurality score, i.e., the number

of first-place votes he receives. These scores are then gradually decreased; when the score of a candidate

reaches zero, he is eliminated. Voters are processed one by one in an arbitrary order: when it is the turn

of a voter, she decrements the score of her bottom choice among uneliminated candidates. Since the initial

scores add up to the number of voters, all of the candidates will be eliminated at the end. The last eliminated

candidate wins. Notice that this rule does not even require access to the voters’ full rankings. Aside from the

top choices, it only requires from each voter her bottom choice among uneliminated candidates. Thus, when

implemented via sequential queries to voters, PLURALITYVETO also has low communication overhead. We

summarize our main result as follows. (A formal presentation and proof are given in Section 3.)

1For ease of presentation, we use female pronouns for voters and male pronouns for candidates throughout.
2This assumption generalizes the classic notion of single-peaked preferences [7, 23].
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Contribution 1. PLURALITYVETO has the optimal metric distortion of 3 and can be implemented to require

each voter to communicate only O(logm) bits to the voting rule.

A candidate with a strict majority of first-place votes wins under PLURALITYVETO, regardless of the

order in which voters are processed. Thus, one can think of the elimination process (or, as we call it, multi-

round veto) as a runoff stage. This makes our rule conceptually simple as well; it is just plurality voting

followed by multi-round veto. In this respect, it resembles instant runoff voting, which is used in national

elections in several countries. As in instant runoff voting, PLURALITYVETO can be used by eliciting from

each voter her full ranking, so that the runoff stage can be run instantly. Alternatively, it can be arranged as

a two-stage election in which voters first cast a vote for their top choice, and in the following stage, each

voter cancels the vote of another voter.

PLURALITYMATCHING and its analysis are based on domination graphs, a family of bipartite graphs

G(c) (one per candidate c) between voters and voters defined in Section 2. Munagala and Wang [24] and

Kempe [21] had shown that ifG(c) has a perfect matching, then c has distortion at most 3. The key contribu-

tion of Gkatzelis et al. [17] was to show that such a candidate c always exists. In fact, they proved a general-

ization, called the Ranking-Matching Lemma, which shows the existence of a graph with a weighted perfect

bipartite matching in a more general class of bipartite graphs. We also give (in Section 4) a constructive

one-paragraph proof of this more general Ranking-Matching Lemma, using a variant FRACTIONALVETO

of PLURALITYVETO which decreases weights fractionally, rather than integrally, in each step.

Finally, we generalize PLURALITYVETO to a class of randomized voting rules that choose a candidate

with probability proportional to his residual score at the kth round of PLURALITYVETO, which we refer to

as k-ROUNDPLURALITYVETO. When k = 0, this more general rule specializes to the well-known rule

RANDOMDICTATORSHIP, which chooses the top choice of a uniformly random voter. Hence, randomizing

the outcome proportional to the scores achieves distortion 3−2/nwhen k = 0, as shown in [1]. In Section 5,

we show that k-ROUNDPLURALITYVETO in fact achieves distortion at most 3 for all k. In that way, it

interpolates between RANDOMDICTATORSHIP (for k = 0) and PLURALITYVETO (for k = n− 1), and the

parameter k controls the variance of the output, but does not affect the distortion. The intuition behind this

is that PLURALITYVETO repeatedly decreases scores for “extreme” candidates, and thus is likely to end up

with central ones. We elaborate on this intuition in the context of Peer Selection in Section 6.

Contribution 2. k-ROUNDPLURALITYVETO has expected metric distortion at most 3 for any number of

rounds k.

This upper bound is almost tight, since any rule that can only elect candidates who are the top choice of

at least one voter must have distortion at least 3−o(1) [17]. Also, since k controls the variance of the output,

at a high level, this result relates to the work of Fain et al. [14] who are not only interested in the expected

distortion of rules, but also in the expected squared distortion, essentially forcing randomized rules to have

lower variance in their distortion.

Other Related Work The utilitarian analysis of voting rules through the lens of approximation algorithms

was first suggested in [9, 10, 26, 27]. Boutilier and Rosenschein [8], Anshelevich et al. [2] were the first

to clearly articulate the tension between the objective of maximizing utility (or minimizing cost) and the

available information, which is only ordinal; they also termed the resulting gap distortion. In the earlier

work, such as [9, 10, 26, 27], the focus was on (positive) utilities, and no additional assumptions (such as

metric costs) were placed on the utilities.
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The role of randomization in reducing distortion has been studied in several prior papers. The fact that

randomized voting rules can achieve expected distortion lower than 3 (the known lower bound for determin-

istic voting rules) was first shown by Anshelevich and Postl [1], who showed that RANDOMDICTATORSHIP

achieves expected distortion 3 − 2
n . A slightly improved distortion of 3 − 2

m was achieved in [20] by ran-

domizing between RANDOMDICTATORSHIP and PROPORTIONALTOSQUARES. This upper bound is best

possible among rules that only have access to each candidate’s plurality score [19] — in fact, Gross et al.

[19] prove a more general lower bound, which establishes that when each voter only communicates her top

k < n/2 candidates, every randomized voting rule has distortion at least 3− 2
⌊n/k⌋ . A lower bound of 2 on

the distortion of any randomized voting rule is straightforward, and it had been conjectured that this bound

may be achievable by some randomized voting rule. This conjecture was recently disproved in [12], which

established a lower bound of 2.0261 for m = 3 candidates and 2.1126 as the number of candidates m→ ∞.

Whether any randomized voting rule can achieve expected disortion 3 − Ω(1) for arbitrary m remains an

intriguing open question.

Recall that PLURALITYVETO only requires very limited communication from each voter, albeit in an

n-round sequential algorithm. In this way, our work relates generally to the study of communication in

social choice rules (e.g., [8, 13]), and more specifically to studies of the tradeoff between communication

and metric distortion. The recent papers [14, 20] establish related lower bounds: Fain et al. [14] show that

any voting rule that only obtains the top k = O(1) candidates of each voter must have squared distortion

Ω(m), in particular implying a bound of Ω(m) for the distortion of deterministic rules. Kempe [20] proves

a slightly more general and stronger lower bound of Ω(m/k) on the distortion of any deterministic voting

rule that only obtains the candidates ranked by each voter in a set K of size k = |K| of positions. Our

voting rule avoids these lower bounds by obtaining the bottom candidate from a specified set for each voter;

thus, for different voters, the candidates in different positions are queried.

Using randomization, communication can be drastically reduced even compared to our voting rule. Fain

et al. [14] present a RANDOMREFEREE mechanism: the mechanism asks two randomly chosen voters for

their top choices, and then has a third voter choose between the two proposed candidates. This mechanism,

which only requires access to the top choices of two voters plus one bit, achieves not only constant expected

distortion, but constant expected squared distortion.

Several other recent works have studied the tradeoff between communication and distortion. Mandal

et al. [22] study tradeoffs between communication and distortion in the utilitarian model, i.e., without any

metric constraints. They also assume that voters actually know their utilities. In this model, they obtain

upper and lower bounds on the achievable distortion under communication complexity constraints. Pier-

czyński and Skowron [25] consider the distortion (and a modified notion of distortion) for approval-based

voting (which has reduced communication), in which voters approve all candidates within a certain distance

of themselves. They show that under certain parameter settings, for a carefully chosen radius, approval-

based voting achieves constant distortion in their sense. Bentert and Skowron [6] consider the approximate

implementation of score-based voting rules using low communication. In particular, their techniques in

Section 3.2 show that constant distortion 5 + o(1) can be achieved when the number of voters is large, by

asking each voter to compare two uniformly random candidates.

2 Preliminaries

Throughout, we use bold face for vectors, and denote the ith component of a vector x by xi. Given a set S,

let ∆(S) denote the probability simplex over S, i.e., the set of non-negative weight vectors over S that add

up to 1.
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An election is a tuple E = (V,C,≻V ) consisting of a set of n voters V , a set of m candidates C and

a ranked-choice profile ≻V = (≻v)v∈V ; here, ≻v is the ranking of voter v, i.e., a total order over C . We say

that voter v ranks candidate c higher than candidate c′ if c ≻v c
′. We also use c <v c

′ when c ≻v c
′ or

c = c′, in which case we say that v ranks c weakly higher than c′.
A voting rule f is an algorithm that returns a candidate f(≻V ) ∈ C given a ranked-choice profile ≻V .

We refer to f(≻V ) as the winner of the election E using the voting rule f , or just as the winner of f if E is

clear from the context. For the most part, we will consider deterministic voting rules; in Section 5, we will

also study randomized voting rules.

We refer to the candidate ranked highest by voter v as the top choice of v, and denote him by top(v).
The candidate ranked lowest by voter v is likewise referred to as the bottom choice of v. We use plu(c) to

denote the plurality score of candidate c, i.e., the number of voters whose top choice is c.

2.1 Metric Distortion

A metric over a set S is a function d : S × S → R≥0 which satisfies the following conditions for all

a, b, c ∈ S: (1) Positive Definiteness: d(a, b) = 0 if and only3 if a = b; (2) Symmetry: d(a, b) = d(b, a);
(3) Triangle inequality: d(a, b) + d(b, c) ≥ d(a, c).

Given an election E = (V,C,≻V ), we say that a metric d over4 V ∪ C is consistent with the ranking

≻v of voter v if d(v, c) ≤ d(v, c′) for all c, c′ ∈ C such that c ≻v c
′. We say that d is consistent with the

ranked-choice profile ≻V if it is consistent with the ranking ≻v for all voters v ∈ V . We use D(≻V ) to

denote the domain of metrics consistent with ≻V .

The (utilitarian) social cost of a candidate c with respect to a metric d is defined as the candidate’s sum

of distances to all voters: cost(c, d) =
∑

v∈V d(v, c). A candidate c∗d is optimal with respect to the metric d
if c∗d ∈ argminc∈C cost(c, d). The distortion of a voting rule f , denoted by dist(f), is the largest possible

ratio between the cost of the winner of f and that of an optimal candidate c∗d, with respect to the worst

possible metric d ∈ D(≻V ). That is,

dist(f) = max
≻V

sup
d∈D(≻V )

cost(f(≻V ), d)

cost(c∗d, d)
.

2.2 Domination Graphs

Domination graphs offer a conceptually simple approach for giving an upper bound of 3 on the distortion of

a voting rule. Given an election E = (V,C,≻V ), the domination graph of a candidate c ∈ C is the bipartite

graph GE(c) = (V, V,Ec) where (v, v′) ∈ Ec if and only if c <v top(v′). The main use of these graphs is

via the following lemma, due to [24, 21, 17].

Lemma 1. Let f be a voting rule such that for every election E = (V,C,≻V ), the domination graph

GE (f(≻V )) has a perfect matching. Then, f has distortion 3.

Throughout the remainder of the paper, we assume that an election E = (V,C,≻V ) is given, and

we drop E from notation when it is clear from the context.

3Our proofs do not require the “only if” condition, so technically, all our results hold for pseudo-metrics, not just metrics.
4We only care about the distances between voters and candidates, so d can be defined as a function d : V × C → R≥0 instead

of on V ∪ C. The triangle inequality can then be written as 0 ≤ d(v, c) ≤ d(v, c′) + d(v′, c′) + d(v′, c) for all v, v′ ∈ V and for

all c, c′ ∈ C.
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3 Optimal Distortion via PLURALITYVETO

We now introduce PLURALITYVETO and show that it has distortion 3. PLURALITYVETO requires very

limited ordinal information; it only requires one each of the following two types of queries to every voter.

– A top query to a voter v simply returns top(v).

– A bottom-among query to a voter v regarding a subset of candidates A returns the bottom choice of v
among candidates in A, denoted by bottomA(v).

Notice that both can of course be easily derived when each voter’s full ranking ≻v is known.

PLURALITYVETO assigns an initial score of plu(c) to each candidate c; doing so only requires making

a top query to each voter. These scores are then gradually decreased; when the score of a candidate c reaches

zero, we say that c is eliminated. Voters are processed one by one in an arbitrary order; this order can be fixed

beforehand, or be adaptive and based on voters’ preferences. When a voter v is processed, she decrements

the score of her bottom choice among the not-yet-eliminated candidates; the bottom choice can be found by

making a bottom-among query to v. The winner is the last eliminated candidate. Pseudo-code is given as

Algorithm 1.

Algorithm 1 PLURALITYVETO

Input: An election E = (V,C,≻V )
Output: A winning candidate c ∈ C

1: initialize score(c) = plu(c) for each c ∈ C
2: let (v1, . . . , vn) be an arbitrary ordering of V

3: for i = 1, 2, . . . , n do

4: Ai = {c ∈ C : score(c) > 0}
5: ci = bottomAi

(vi)

6: decrement score(ci) by 1

7: return cn

Theorem 1. The distortion of PLURALITYVETO is 3.

Proof. We show that G(cn) has a perfect matching, which proves that PLURALITYVETO has distortion 3

by Lemma 1. Initially, the scores of candidates add up to n, and in each of the n iterations, a positive score

is decremented by 1. Thus, the score of each candidate must be 0 at the end. This implies that, for each

candidate c, there are plu(c) distinct voters vi such that ci = c. In other words, for each voter vi, we can

define a unique voter v′i such that top(v′i) = bottomAi
(vi). This means that vi ranks any candidate in Ai

weakly higher than top(v′i). Since score(cn) does not get to 0 until the end, note that cn ∈ Ai for all i.
Hence, each voter vi ranks cn weakly higher than top(v′i), i.e., (vi, v

′
i) ∈ Ecn . Thereby, we have shown that

G(cn) has a perfect matching.

Algorithm 1 is not only quite natural; it also requires only O(logm) bits of information from each voter

vi, namely, top(vi) and bottomAi
(vi). However, implementing the rule with these two queries comes with

a trade-off: voters need to wait for possibly n rounds after reporting their top choice.
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Note that our proof of Theorem 1 also implies that there is always a candidate whose domination graph

has a perfect matching. Indeed, all attempts to resolve the optimal metric distortion conjecture, in one way

or another, boiled down to proving the existence of such a candidate. This was done in [17] by giving

a stronger existence result, called the ranking-matching lemma. Our rule, as stated so far, does not require

this stronger lemma, but in the next section, we show that a simple generalization also implies the general

ranking-matching lemma.

4 A Simple Proof of the Ranking-Matching Lemma via FRACTIONALVETO

Our proof of Theorem 1 implied that there always exists a candidate whose domination graph has a perfect

matching. The Ranking-Matching Lemma in [17] is a stronger existence result based on an extension of

domination graphs in which nodes have arbitrary weights. Given an election E = (V,C,≻V ) and weight

vectors p ∈ ∆(V ) and q ∈ ∆(C), the (p,q)-domination graph of a candidate c̃ ∈ C is the bipartite graph

GE
p,q(c̃) = (V,C,Ec̃,p,q); the edge (v, c) ∈ Ec̃ if and only if c̃ <v c. A fractional perfect matching of

GE
p,q(c̃) is a weight function w : Ec̃ → R≥0 such that

∑
c∈C:(v,c)∈Ec̃

w(v, c) = pv for each voter v and∑
v∈V :(v,c)∈Ec̃

w(v, c) = qc for each candidate c. That is, the total weight of edges incident to each node

must be equal to the weight of the node.

A candidate’s domination graph has a perfect matching if and only if his (puni,qplu)-domination graph

has a fractional perfect matching; here, puniv = 1/n for all v ∈ V and qpluc = plu(c)/n for all c ∈ C .

The Ranking-Matching Lemma gives a stronger existence guarantee by asserting that, for any election E
and any p ∈ ∆(V ) and q ∈ ∆(C), there is a candidate c ∈ C whose (p,q)-domination graph GE

p,q(c)
has a fractional perfect matching. Gkatzelis et al. [17] give a proof by minimal counterexample for this

lemma; thus, their proof is non-constructive. Moreover, it contains elaborate details for defining a minimal

counterexample and intricate arguments involving smaller elections where some voters and candidates are

removed. This makes the proof somewhat harder to grasp.

We provide a much simpler and constructive proof of the Ranking-Matching Lemma. We generalize

PLURALITYVETO in a way that allows any p ∈ ∆(V ) and q ∈ ∆(C) to be given as input. We refer to

this voting rule as FRACTIONALVETO, and give the pseudo-code as Algorithm 2. Notice that for the special

case with weights puni and q
plu, FRACTIONALVETO specializes to PLURALITYVETO.

Algorithm 2 FRACTIONALVETO

Input: An election E = (V,C,≻V ) along with weight vectors p ∈ ∆(V ) and q ∈ ∆(C)
Output: A candidate c ∈ C whose (p,q)-domination graph has a fractional perfect matching

1: initialize weight(v) = pv for each v ∈ V
2: initialize weight(c) = qc for each c ∈ C

3: while there is a v ∈ V with weight(v) > 0 do

4: let v be such a voter

5: A = {c ∈ C : weight(c) > 0}
6: c = bottomA(v)
7: ǫ = min {weight(v),weight(c)}
8: decrement weight(v) by ǫ
9: decrement weight(c) by ǫ

10: return c (i.e., the last candidate whose weight is decremented)

7



Theorem 2. Given any election E = (V,C,≻V ), and any weight vectors p ∈ ∆(V ) and q ∈ ∆(C),
FRACTIONALVETO returns a candidate c ∈ C whose (p,q)-domination graph GE

p,q(c) has a fractional

perfect matching.

Proof. We begin by observing that the while loop (lines 3–9) terminates in at most n +m iterations since

in each iteration, the weight of either a voter v or a candidate c reaches 0. Next, we show that if a candidate,

say c̃, wins, then Gp,q(c̃) has a fractional perfect matching w.

First, note that, since c̃ is the last candidate whose weight is decremented, c̃ ∈ A for all iterations. Let

us now consider an arbitrary iteration of FRACTIONALVETO in which a voter v is chosen. By definition, v
ranks any candidate in A weakly higher than the candidate c = bottomA(v); in particular, v ranks c̃ weakly

higher than c, i.e., (v, c) ∈ Ec̃. Let w assign a weight of ǫ to the edge (v, c), i.e., w(v, c) = ǫ. We now show

that w is a fractional perfect matching of Gp,q(c̃).
For each edge (v, c) ∈ Ec̃ to which w assigns positive weight, there exists an iteration where the weights

of both v and c are decremented by w(v, c). Hence, the total weight of edges incident to each voter and

candidate is equal to how much their weight is decremented until the end. All we need to show is that the

weight of each voter v and candidate c reaches 0 at the end as they are initialized, respectively, to pv and qc.
The total weights of voters and candidates are initially the same, and they stay so after each iteration since

only a single voter’s and candidate’s weights are decremented, and by the same amount. Therefore, when

the weight of each voter reaches 0, so does each candidate’s. Thus, we have shown that w is a fractional

perfect matching of Gp,q(c̃).

5 A Class of Randomized Voting Rules with Distortion 3

As shown in Theorem 1, PLURALITYVETO has distortion 3. Another voting rule that is well known to have

distortion 3 (or 3− 2/n, to be precise) is RANDOMDICTATORSHIP, which returns the top choice of a voter

chosen uniformly at random [1]. In the same vein, one can view PLURALITYVETO as choosing a voter de-

terministically and returning that voter’s top choice; this voter is referred to as v′n in the proof of Theorem 1.

This suggests a more general class of randomized voting rules, interpolating between RANDOMDICTATOR-

SHIP and PLURALITYVETO: carefully rule out k voters, and return the top choice of a uniformly random

voter among the remaining n − k voters. In this section, we introduce such a general rule and show that

it achieves distortion at most 3 for every choice of k ∈ {0, 1, . . . , n− 1}.

A randomized voting rule f is an algorithm which, given a ranked-choice profile ≻V , returns a prob-

ability distribution over candidates f(≻V ) ∈ ∆(C). Writing w = f(≻V ), each candidate c is chosen as

the winner by f with probability wc. We refer to w as the winner distribution of f . The cost of a winner

distribution under a given metric is the expected cost of the winner, i.e., cost(w, d) =
∑

c∈C wc · cost(c, d).
The distortion of a randomized voting rule is still the ratio of the rule’s cost to the cost of the optimum

solution.

To phrase our generalized voting rule precisely, we observe that a candidate c wins under RANDOM-

DICTATORSHIP with probability proportional to his plurality score plu(c). When the score of candidate ci
is decremented at the ith iteration of PLURALITYVETO, suppose that we rule out voter v′i, as defined in the

proof of Theorem 1. Since top(v′i) = ci, the current score of candidate ci can be viewed as his plurality

score with respect to the remaining voters v′i+1, . . . , v
′
n. Our generalized voting rule (Algorithm 3) there-

fore simply runs PLURALITYVETO for only k < n iterations, then chooses a candidate with probability

proportional to the residual scores. The algorithm is formally given as Algorithm 3.
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Algorithm 3 k-ROUNDPLURALITYVETO

Input: An election E = (V,C,≻V )
Output: A winner distribution w ∈ ∆(C)

1: initialize score(c) = plu(c) for each c ∈ C
2: let (v1, . . . , vn) be an arbitrary ordering of V

3: for i = 1, 2, . . . , k do

4: Ai = {c ∈ C : score(c) > 0}
5: ci = bottomAi

(vi)

6: decrement score(ci) by 1

7: return wc = score(c)/(n − k) for all c ∈ C

Our main result in this section is that k-ROUNDPLURALITYVETO has distortion at most 3 for any k.

Theorem 3. The distortion of k-ROUNDPLURALITYVETO is at most 3 for any k ∈ {0, 1, . . . , n − 1}.

Our proof is based on a generalization of the flow technique from [21] to randomized voting rules. It is

encapsulated in Lemma 2 below; this lemma is a straightforward generalization of Lemma 3.1 from [21].

As in that paper, the proof is somewhat technical and long; thus, it is given in the appendix.

The key concept, adopted from [21], is the following flow network. Given an election E , let HE =
(V × C,E) be a directed graph with the the following edges:

– For every voter v and any pair of candidates c and c′ such that c ≻v c
′, there is a directed preference

edge (v, c) → (v, c′) in E.

– For every candidate c and any pair v 6= v′ of distinct voters, there is a (bi-directed) sideways edge

(v, c) ↔ (v′, c) in E.

An illustration of a flow network is given in Fig. 1.

For a winner distribution5
w ∈ ∆(C) and a candidate c∗, a (w, c∗)-flow on HE is a circulation g (i.e.,

non-negative and conserving flow unless specified otherwise) in which

– For each candidate c and voter v, exactly wc units of flow originate at the node (v, c).

– Flow is only absorbed at nodes (v, c∗).

The cost of g at voter v is the total amount of flow absorbed at (v, c∗), plus the total flow on side-

ways edges into or out of nodes (v, c), for any candidate c. Formally, costv(g) =
∑

e into (v,c∗) ge +∑
c 6=c∗

∑
v′ 6=v g(v′,c)↔(v,c) where gu↔u′ = gu→u′ + gu′→u. The cost of g is cost(g) = maxv∈V costv(g).

An illustration of flows and their costs is given in Fig. 2.

The key lemma showing how to use flows to upper-bound the distortion of a voting rule is the following.

Lemma 2. Let f be a randomized voting rule, with the following property: For every election E =
(V,C,≻V ) and any candidate c∗ ∈ C , on the flow network HE , there is a (w, c∗)-flow g such that

w = f(≻V ) and cost(g) ≤ λ. Then, dist(f) ≤ λ.

5Kempe [21] considered only deterministic voting rules; in that case, the distribution w was restricted to have probability 1 for

the deterministic winner, and 0 for all other candidates.
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v1 v2 v3 v4

c1

c2

c3

c4

Figure 1: An illustration of a flow network HE . In the example E , there are 4 voters and 4 candidates. The voter

preferences are the following: v1 : c1 ≻ c2 ≻ c3 ≻ c4; v2 : c1 ≻ c3 ≻ c4 ≻ c2; v3 : c2 ≻ c3 ≻ c4 ≻ c1;

v4 : c4 ≻ c2 ≻ c1 ≻ c3. Preference edges are shown in black, while sideways edges are shown in red. For legibility,

we have omitted preference edges that could be replaced by a path of two or more other preference edges, e.g., the

edge from (v1, c1) → (v1, c3).

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. Fix an arbitrary candidate c∗ ∈ C . We will describe a (w, c∗)-flow g, and prove that

it has cost at most 3. Theorem 3 then follows directly from Lemma 2.

As shown in the proof of Theorem 1, we can sort the voters as v′1, . . . , v
′
n such that top(v′i) = bottomAi

(vi)
for all i in the execution of PLURALITYVETO, i.e., without stopping early. Define Vk = {v1, . . . , vk} and

Vk = {vk+1, . . . , vn}; also V ′
k = {v′1, . . . , v′k} andV ′

k = {v′k+1, . . . , v
′
n}.

In order to obtain a (w, c∗)-flow, we must route flow such that for each candidate c and each voter v ∈ V ,

exactly score(c)/(n − k) units of flow originate at the node (v, c). In particular, because score(c) = 0 for

candidates c /∈ Ak, no flow originates at any nodes (v, c) for c /∈ Ak.

1. First, consider a voter vi ∈ Vk, so that i ≤ k. Since Ak ⊆ Ai, voter vi ranks all candidates

in Ak weakly higher than bottomAi
(vi). Therefore, g can route all the flow originating at nodes

(vi, c) to (vi, bottomAi
(vi)) along preference edges. At that point, there is one unit of flow at

(vi, bottomAi
(vi)). This one unit of flow is next routed to (v′i, bottomAi

(vi)) = (v′i, top(v
′
i)) us-

ing a sideways edge. Finally, since top(v′i) is by definition the top choice of v′i, the unit can be routed

to (v′i, c
∗) using a preference edge, and is then absorbed.

2. Next, we (jointly) consider all voters vi ∈ Vk. Fix a candidate c ∈ Ak. Because score(c)/(n − k)
units of flow originate at each node (vi, c) for vi ∈ Vk, and there are |V k| = n−k such nodes, in total,

exactly score(c) units of flow originate at these nodes. On the other hand, score(c) is also the number

10



v1 v2 v3 v4

c1

c2

c3

c4 = c∗

2/3 2/3 2/3 2/3

1/3 1/3 1/3 1/3

2/3

7/6

7/6

5/3

5/3

1/6 1/6

2/3

5/6

7/6

1/3
1/3

1/3

1/3

4/3 3 8/3 1

Figure 2: An illustration of a (w, c∗)-flow on the flow network from Fig. 1, for w = (2/3, 1/3, 0, 0) and c∗ = c4.

Edges are only shown when they are used by the flow. Incoming flow is shown in blue. Flow routed along preference

edges is shown in black, while flow routed sideways is shown in red to emphasize that it contributes to the cost. The

amount of flow is given numerically, and also shown using the width of the lines/arcs. The costs for each voter are

shown at the bottom of the corresponding column. The overall cost is the maximum cost, i.e., 3.

of distinct voters v′j ∈ V ′
k such that top(v′j) = c. g distributes all the score(c) units of flow from nodes

(vi, c) (for vi ∈ Vk) to the score(c) nodes (v′j , c) with top(v′j) = c, in a way that each voter v′j ∈ V ′
k

receives one unit of flow. Then, for each voter v′j ∈ V ′
k with top(v′j) = c, the flow g routes the one

unit of flow from (v′j , c) to (v′j , c
∗) using a preference edge; there, it is absorbed. Because flow only

originates at nodes (vi, c) with c ∈ Ak, all the flow is in fact routed to an absorbing node in this way.

In the flow g described above, for each voter v, exactly one unit is sent out on sideways edges, and one

unit is received on sideways edges. For voters in Vk, the unit sent is by the first case above; for voters in V ′
k,

the unit received is by the first case. For voters inVk, the unit sent is by the second case; for voters inV ′
k, the

unit received is by the second case. Finally, each voter vi absorbs the one received unit of flow at (vi, c
∗).

This proves that cost(g) = 3, completing the proof. �

6 Conclusion and Future Work

We showed that a simple deterministic voting rule, called PLURALITYVETO, achieves the optimal met-

ric distortion of 3; the proof is short and simple. We used a generalization of PLURALITYVETO, called

FRACTIONALVETO, to prove the Ranking-Matching Lemma of Gkatzelis et al. [17], and we also showed

that a class of randomized rules interpolating between RANDOMDICTATORSHIP and PLURALITYVETO all

achieve expected distortion at most 3.
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PLURALITYVETO is a very natural and potentially practical voting rule, and it would be of interest to

understand which other properties it satisfies, including the standard axiomatic voting rule properties. One

difficulty is that the outcome depends on the order in which the voters are queried in the multi-round veto

process. On the other hand, this makes the structure of the set W ⊆ C of potential winners (i.e., candidates

who will win for at least one processing order of the voters) an interesting object of study.

Note that W is a subset of candidates whose domination graph has a perfect matching, i.e., potential

winners of PLURALITYMATCHING . This has several immediate implications. First, it is possible that for

all orderings of voters, the selected candidate fails to be a Condorcet winner, as shown for PLURALITY-

MATCHING by Gkatzelis et al. [17]. Second, if the metric space is α-decisive (i.e., for each voter, the ratio

between her distance to her top-ranked and second-ranked candidate is at most α [1]) then the distortion

bound improves to 2 + α.

Additional insights can be gleaned from the Peer Selection setting, in which the set of voters is the

same as the set of candidates, so each voter/candidate ranks herself first; as a result, all such instances are

0-decisive. PLURALITYVETO can be even more easily described in the Peer Selection setting: in each round

i, the voter vi eliminates from consideration the remaining candidate furthest from her.

Here, we consider a slight variant of PLURALITYVETO: the order of voters is chosen adaptively, and the

next voter vi+1 is always one whose first-place vote was canceled by vi. In addition, the vote of v1 is always

canceled, so the winner is the top choice of vn. A proof essentially identical6 to the one of Theorem 1 shows

that this rule returns a candidate whose domination graph has a perfect matching as well. In turn, we can

use this insight to prove that there are at least two candidates who can win in Peer Selection, i.e., |W | ≥ 2.

First, if the process is run from an arbitrary v1, then some v̂ = vn wins. If the process is run starting from

v1 = v̂, the winner must be some other candidate ṽ 6= v̂, because v̂ is eliminated in the first step. So there

are at least two potential winners.

Peer selection also has interesting properties when the voters/candidates are embedded in Euclidean

space RD. Since each voter, on her turn, eliminates the voter furthest from her, the eliminated voter is always

located at a corner of the convex hull of all previously uneliminated ones. In this sense, PLURALITYVETO

“peels away” extreme candidates one by one7: the convex hull of the voters inAk (who are not yet eliminated

after k rounds) contains no voter from Āk. A natural question is whether the set W of potential winners has

the same convexity property, i.e., the convex hull of W contains no voter/candidate from C \W .8 If true,

this would show that the potential winners are in a sense “cohesive.”

Another compelling direction concerns the incentives under PLURALITYVETO. We described it as

a sequential process in which voters are queried about their bottom choice one by one (although of course

the process can be fully simulated if each voter’s full ranking is known). In describing the sequential

process, we assumed that all queries are answered truthfully. While no non-trivial voting rule can be truthful

in general [16, 28], truthfulness can be achieved in restricted settings [15]. An interesting direction here is to

consider the “Price of Anarchy:” what is the worst distortion of PLURALITYVETO if agents play a subgame

perfect equilibrium in the VETO stage instead of truthfully revealing their bottom choice?

6Because the vote of v1 is always canceled, this rule is not technically a special case of PLURALITYVETO.
7This behavior also provides some informal intuition for why the final candidate should be close to the geometric median.
8For the general case (rather than Peer Selection), this is false: for example, if there is one voter and candidate each on the left

and right, but only one candidate (with no voters) in the center, then the left and right candidates can win, but not the center one.

12



References

[1] Elliot Anshelevich and John Postl. Randomized social choice functions under metric preferences. In

Proc. 25th Intl. Joint Conf. on Artificial Intelligence, pages 46–59, 2016.

[2] Elliot Anshelevich, Onkar Bhardwaj, and John Postl. Approximating optimal social choice under

metric preferences. In Proc. 29th AAAI Conf. on Artificial Intelligence, pages 777–783, 2015.

[3] Elliot Anshelevich, Onkar Bhardwaj, Edith Elkind, John Postl, and Piotr Skowron. Approximating

optimal social choice under metric preferences. Artificial Intelligence, 264:27–51, 2018.

[4] Elliot Anshelevich, Aris Filos-Ratsikas, Nisarg Shah, and Alexandros A. Voudouris. Distortion in

social choice problems: an annotated reading list. SIGecom Exchanges, 19(1):12–14, 2021.

[5] Elliot Anshelevich, Aris Filos-Ratsikas, Nisarg Shah, and Alexandros A. Voudouris. Distortion in

social choice problems: The first 15 years and beyond. In Proc. 30th Intl. Joint Conf. on Artificial

Intelligence, pages 4294–4301, 2021.

[6] Matthias Bentert and Piotr Skowron. Comparing election methods where each voter ranks only few

candidates. In Proc. 34th AAAI Conf. on Artificial Intelligence, pages 2218–2225, 2020.

[7] Duncan Black. On the rationale of group decision making. J. Political Economy, 56:23–34, 1948.

[8] Craig Boutilier and Jeffrey S. Rosenschein. Incomplete information and communication in voting. In

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors, Handbook
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A Proof of Lemma 2

Here, we prove Lemma 2. We restate it for convenience.

Lemma 2 Let f be a randomized voting rule, with the following property: For every election E =
(V,C,≻V ) and any candidate c∗ ∈ C , on the flow network HE , there is a (w, c∗)-flow g such that

w = f(≻V ) and cost(g) ≤ λ. Then, dist(f) ≤ λ.

Proof. The proof idea is exactly the same as in [21]: we phrase an adversary’s optimization problem of

maximizing the expected distortion under w as a linear program. By weak duality, any feasible solution to

the dual program provides an upper bound on the maximum distortion. We then show that flows directly

give rise to such dual-feasible solutions.

The primal linear program is directly adapted from the linear program first given in [3, 18] in the context

of a deterministic winner. The variables xv,c of the linear program capture the distances between voters v
and candidates c. As such, they must be non-negative and satisfy the triangle inequality; furthermore, they

have to be consistent with the voters’ preferences ≻v. The adversary’s objective is to maximize the expected

distortion, compared to the optimal candidate c∗ with knowledge of the metric. (That is, c∗ is chosen with

hindsight.) Since the distortion is a ratio, to ensure linearity, we phrase the LP as solving the optimization

problem of maximizing the expected cost under the distribution w, subject to the (optimum) candidate c∗

having cost exactly 1. This is equivalent, as any distances can be normalized to ensure this property. The

resulting linear program is the following.

Maximize
∑

cwc ·
∑

v xv,c
subject to xv,c ≤ xv′,c + xv′,c′ + xv,c′ for all c, c′, v, v′ (△ Inequality)

xv,c ≤ xv,c′ for all c, c′, v such that c ≻v c
′ (consistency)∑

v xv,c∗ = 1 (normalization)

xv,c ≥ 0 for all c, v.

(1)

After some straightforward rearrangements, the dual linear program is given as LP (2).

Minimize α

subject to α+
∑

c′:c∗≻vc′
φ
(v)
c∗,c′ −

∑
c′:c′≻vc∗

φ
(v)
c′,c∗

+
∑

c′,v′

(
ψ
(v,v′)
c∗,c′ − ψ

(v,v′)
c′,c∗ − ψ

(v′,v)
c∗,c′ − ψ

(v′,v)
c′,c∗

)
≥ wc∗ for all v

∑
c′:c≻vc′

φ
(v)
c,c′ −

∑
c′:c′≻vc

φ
(v)
c′,c

+
∑

c′,v′

(
ψ
(v,v′)
c,c′ − ψ

(v,v′)
c′,c − ψ

(v′,v)
c,c′ − ψ

(v′,v)
c′,c

)
≥ wc for all c 6= c∗, v

ψ
(v,v′)
c,c′ ≥ 0 for all v, v′, c, c′

φ
(v)
c,c′ ≥ 0 for all v, c, c′.

(2)
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The dual has three types of variables:

– ψ
(v,v′)
c,c′ for the triangle inequality constraints

– φ
(v)
c,c′ for the consistency constraints

– α for the normalization constraint.

Because the normalization constraint is an equality constraint, α is unconstrained.

Now consider a candidate c∗ for whom the adversary can achieve the largest primal LP value, i.e., who

is a witness for the maximum distortion. Fix such a candidate c∗ for the rest of the proof, and let g = gc
∗

be a (w, c∗)-flow on HE of cost at most λ — such a flow g exists by assumption of the lemma. We use g to

determine values for the dual variables, and show that the proposed dual solution is feasible. Furthermore,

we show that the dual objective value is cost(g) ≤ λ. By weak LP duality, this implies that the primal is

upper-bounded by cost(g), i.e., that the adversary cannot force expected distortion larger than cost(g) by

using the candidate c∗. Since c∗ gave the largest distortion bound, we obtain an upper bound on the expected

distortion under w. This will complete the proof. The dual variables are set as follows:

– For each voter v and candidates c, c′, we set φ
(v)
c,c′ to be the flow on the preference edge (v, c) → (v, c′),

i.e., we set φ
(v)
c,c′ = g(v,c)→(v,c′).

– For each pair of voters v, v′ and candidate c, we set ψ
(v,v′)
c,c∗ to be the flow on the sideways edge

(v, c) → (v′, c), i.e., we set ψ
(v,v′)
c,c∗ = g(v,c)→(v′,c). Notice that ψ

(v,v′)
c,c∗ has four arguments, and we

choose c∗ for the fourth argument.

– We set α = cost(g) = maxv costv(g).

– All other dual variables (in particular ψ
(v,v′)
c,c′ for c′ 6= c∗) are set to 0.

First observe that the dual objective value is indeed α = cost(g). Also, non-negativity of the dual

variables is obviously satisfied. Next, we verify that both sets of dual constraints are satisfied by the dual

variables values we assigned.

– To verify the first set of constraints, fix a voter v, and rearrange the constraint to

wc∗+




∑

c′:c′≻vc∗

φ
(v)
c′,c∗ +

∑

c′,v′

ψ
(v′,v)
c∗,c′


−




∑

c′:c∗≻vc′

φ
(v)
c∗,c′ +

∑

c′,v′

ψ
(v,v′)
c∗,c′


+



∑

c′,v′

ψ
(v,v′)
c′,c∗ +

∑

c′,v′

ψ
(v′,v)
c′,c∗




≤ α. (3)

We now substitute the definitions of the dual variables. Note that whenever c′ 6= c∗, our definition

implies that ψ
(v′,v)
c∗,c′ = 0. The left-hand side then becomes

wc∗+




∑

c′:c′≻vc∗

g(v,c′)→(v,c∗) +
∑

v′

g(v′,c∗)→(v,c∗)


−




∑

c′:c∗≻vc′

g(v,c∗)→(v,c′) +
∑

v′

g(v,c∗)→(v′,c∗)




+



∑

c′,v′

g(v,c′)→(v′,c′) +
∑

c′,v′

g(v′,c′)→(v,c′)


 . (4)
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Here, notice that the first term is the flow originating at (v, c∗). The second term is the total flow

entering (v, c∗), and the third term is the total flow leaving (v, c∗). Thus, the combination of the first

three terms is the total flow absorbed at (v, c∗). The final (fourth) term is the total flow along sideways

edges entering or leaving nodes of the form (v, c) for the particular voter v fixed.

Thus, the left-hand side of the (rearranged) dual constraint is exactly the cost costv(g). In particular,

it is bounded by cost(g) = α, implying that the constraint is satisfied by the chosen dual variables.

– Next, we consider the second set of dual constraints, and fix a voter v and candidate c 6= c∗. We again

rearrange the constraint to make the gist of the analysis clear:

wc+




∑

c′:c′≻vc

φ
(v)
c′,c +

∑

c′,v′

ψ
(v′,v)
c,c′


−




∑

c′:c≻vc′

φ
(v)
c,c′ +

∑

c′,v′

ψ
(v,v′)
c,c′


+



∑

c′,v′

ψ
(v,v′)
c′,c +

∑

c′,v′

ψ
(v′,v)
c′,c


 ≤ 0.

Here, we first notice that because c 6= c∗, by definition, all the terms ψ
(v,v′)
c′,c and ψ

(v′,v)
c′,c in the last two

sums are 0. Similarly, in the second and fourth sums, all terms for c′ 6= c∗ are 0. Substituting the

definitions for the remaining dual variables, the left-hand side equals

wc +




∑

c′:c′≻vc

g(v,c′)→(v,c) +
∑

v′

g(v′,c)→(v,c)


−




∑

c′:c≻vc′

g(v,c)→(v,c′) +
∑

v′

g(v,c)→(v′,c)


 .

Here, observe that the first term wc is the amount of flow inserted at (v, c), the second term is the

amount of flow entering the node (v, c) along preference or sideways edges, and the third term is the

amount of flow leaving the node (v, c) along preference or sideways edges. Thus, the left-hand side

is exactly the difference between incoming and outgoing flow at (v, c), and because g was assumed to

be a valid (w, c∗)-flow on HE (and c 6= c∗), this net flow must be 0. Therefore, the dual constraint is

satisfied.

This completes the proof.
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